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Isoperimetric Inequalities with Applications to Concentration.

I To obtain the best possible concentration inequality with respect to the
standard Gaussian measure

– For Lipschitz functions f about their medians

– For the supremum norm of a separable Gaussian process X, when

sup
t∈T
|X (t)| <∞ a.s.

1. Prove Isoperimetric inequality on the sphere.

2. Prove Gaussian isoperimetric inequality.

3. Obtain Gaussian concentration inequality.
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2.2.1 The Isoperimetric Inequality on the Sphere

4/40



Preliminary

I Sn =
{
x ∈ Rn : ‖x‖2 =

∑n+1
i=1 xi

2 = 1
}
,

where x = (x1, ..., xn+1);

I p is the north pole, p=(0,...,0,1) (could be an arbitrary point in Sn)

I µ is the uniform probability distribution on Sn.

I d is the geodesic distance on Sn

I C(x,ρ) is a closed cap centered at a point x ∈ Sn with a radius ρ,

C(x,ρ) := {y : d(x , y) ≤ ρ}

I Aε is ε-neighbourhood of a set A, Aε := {x : d(x ,A) ≤ ε},

and d(x,A) = inf{d(x , y) : y ∈ A}
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Theorem 2.2.1

Theorem 2.2.1

Let A 6= ∅ be a measurable subset of Sn, and let C be a cap such that

µ(C) = µ(A). Then, for all ε > 0,

µ(Cε) ≤ µ(Aε) (2.4)

The isoperimetric inequality on the sphere states that the caps are the sets

of shortest perimeter among all measuralbe sets of a given surface area.
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Proof of Theorem 2.2.1

Proof.

If µ(A) = 0, then C consists of a single point, and (2.4) holds.

If µ(A) 6= 0, It suffices to prove the theorem for A compact.

(∵) There exists Am compact, Am ⊂ A, Am increasing and such that

µ(Am)↗ µ(A). Let Cm be caps with the same centred as C and with

µ(Cm) = µ(Am). since the measuer of a cap is continuous one to one function,

we have µ(Cm)↗ µ(C).

because Am is compact, µ(Am
ε) ≥ µ(Cm

ε)

∴ µ(Aε) ≥ limµ(Am
ε) ≥ limµ(Cm

ε) ≥ µ(Cε)
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Proof of Theorem 2.2.1

Proof.

We Assume A is compact and µ(A) 6= 0 from now.

The rest of proof is divided into three parts

1. Part 1: Construction and main properties of the symmetrisation

operation.(A∗ is called a symmetrisation of A)

2. Part 2: Defining a certain collection of compact sets A containing A and

proving properties of A

3. Part 3: Completion of the proof of Theorem 2.2.1.
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Proof of Theorem 2.2.1, Part 1

I Construct transformation A 7→ A∗ on measurable subsets of the sphere

that preserves area (µ(A) = µ(A∗)),

and decrease perimeter µ(A∗ε )) ≤ (µ(Aε).

I H is n-dimensional subspace (H ⊂ Rn+1) that does not contain the north

pole p.

I σ = σH be the reflection about H.

(→ property : for x,y on the same half-space.)

d(x , y) ≤ d(x , σ(y)) (2.5)

I S+ is the open hemisphere that contains p.

I S− is the other hemisphere.

I S0 = Sn ∩ H
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Proof of Theorem 2.2.1, Part 1

I The symmetrisation of A with respect to σ = σH ,

sH = A∗ is defined as

sH(A) = A∗

= [A ∩ (S+ ∪ S0)] ∪ {a ∈ A ∩ S− : σ(a) ∈ A}

∪ {σ(a) : a ∈ A ∩ S−, σ(a) 6∈ A}

(2.6)

I The symmetrisation should have two properties

(i) µ(A) = µ(A∗)

(ii) µ(Aε) ≤ µ(A∗ε )
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Proof of Theorem 2.2.1, Part 1

(i) µ(A) = µ(A∗)

Three sets in the defition are disjoint, µ{σ(a) : a ∈ A ∩ S−, σ(a) 6∈ A} =

µ{a ∈ A ∩ S− : σ(a) 6∈ A} implies

µ(A∗) = µ(A), A ∈ B(Sn+1) (2.7)

(ii) µ(Aε) ≤ µ(A∗ε )

we prove more, for all A ∈ B(Sn+1) and ε > 0, then

(A∗)ε ⊂ (Aε)
∗, hence µ((A∗)ε) ≤ µ((Aε)

∗) = µ(Aε). (2.8)
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Proof of Theorem 2.2.1, Part 1

proof of (2.8).

For x ∈ (A∗)ε, let y ∈ A∗ such that d(x , y) ≤ ε

1) when x and y lay on different half-spaces,

Using (2.5) and σ is involutive isometry we obtain,

d(σ(x), y) = d(x , σ(y)) ≤ d(σ(x), σ(y)) = d(x , y) ≤ ε

since, y ∈ A∗ implies that y ∈ A or σ(y) ∈ A, in either case x ∈ Aε and

σ(x) ∈ Aε

∴ x ∈ (Aε)
∗
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Proof of Theorem 2.2.1, Part 1

proof of (2.8).

2) when x and y are in S−,

The following inequalites still holds,

d(σ(x), σ(y)) = d(x , y) ≤ ε

since, y ∈ A∗ and y ∈ S−,

y ∈ A and σ(y) ∈ A, therefore, x ∈ Aε and σ(x) ∈ Aε

∴ x ∈ (Aε)
∗

3) when x and y are in S+,

y ∈ A or σ(y) ∈ A, therefore, x ∈ Aε or σ(x) ∈ Aε and x ∈ S+

∴ x ∈ (Aε)
∗
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Proof of Theorem 2.2.1, Part 1

proof of (2.8).

4) when x are in S0,

y ∈ A implies that y ∈ A or σ(y) ∈ A, therefore x ∈ Aε or σ(x) ∈ Aε and

x ∈ S0 means x = σ(x)

∴ x ∈ (Aε)
∗

5) when y are in S0,

y ∈ A implies that y = σ(y) ∈ A, therefore x ∈ Aε and σ(x) ∈ Aε

∴ x ∈ (Aε)
∗

∴ (A∗)ε ⊂ (Aε)
∗
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Proof of Theorem 2.2.1, Part 2

I (K,h) denotes the set of nonempty compact subsets of Sn equipped with

the Hausdorff distance.

I h is Hausdorff distance, h(A,B) = inf {ε : A ⊂ Bε,B ⊂ Aε}

I A is the minimal closed subset of K that contain A and is preserved by sH

for all n-dimensional subspaces H of Rn+1 that do not contain the north

pole (K is a closed {sH}-invariant cooloction of sets that contain A.)

I (If A ∈ A, then sH(A) ∈ A for all H with p 6∈ H)

I Proving of the following claim is main purpose of part 2

Claim: If B ∈ A, then

(a) µ(B) = µ(A), and (b) for all ε > 0, µ(Bε) ≤ µ(Aε)
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Proof of Theorem 2.2.1, Part 2

Proof.

It suffices to show that the collection of closed sets F satisfying (a) and (b) is

preserved by sH for all H not containing p and is closed subset of K. (∵

minimality of A)

1) preserved by sH for all H not containing p:

For B ∈ F , B∗ = sH(B)

by (2.7), µ(B∗) = µ(B) = µ(A) · · · (a)

by (2.8), µ((B∗)ε) ≤ µ(Bε) ≤ µ(Aε) · · · (b)

∴ B∗ = sH(B) ∈ F

13/40



Proof of Theorem 2.2.1, Part 2

Proof.

2) closed subset of K:

Let Bn ∈ F and h(Bn,B)→ 0.

Let ε > 0 be fixed. Given δ > 0, there exists nδ such that B ⊂ Bn
δ

Then, for all n ≥ nδ, µ(Bε) ≤ µ(Bn
δ+ε) ≤ µ(Aδ+ε)

Letting δ ↘ 0, B satisfies condition (b)

Letting ε↘ 0, µ(B) ≤ µ(A) and, for all n large enough, Bn ⊂ Bδ,

then, we get that µ(A) = µ(Bn) ≤ µ(Bδ) letting δ ↘ 0

µ(A) ≤ µ(B), µ(A) = µ(B), B satisfies condition (a).

∴ B ∈ F and F is a closed subset of K.
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Proof of Theorem 2.2.1, Part 3

I Because of the claim about A,

it suffices to show that if C is the cap centred at p such that

µ(A) = µ(C), then C ∈ A

→ Instead, µ(Cε) ≤ µ(Aε)
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Proof of Theorem 2.2.1, Part 3

Proof.

Define f (B) = µ(B ∩ C),B ∈ A

1) f is upper semicontinuous on A:

For any B,Bn ∈ A such that h(B,Bn)→ 0 ,

Given δ > 0, for all n large enough, Bn ⊂ Bδ, and it implies

Bn ∩ C ⊂ Bδ ∩ C (In book, Bn ∩ C ⊂ (B ∩ Cδ)δ)

Hence, limsupnµ(Bn ∩ C) ≤ µ(Bδ ∩ C)

B and C are closed, if δn ↘ 0, then ∩n(Bδn ∩ C) = B ∩ C

∴ lim supn µ(Bn ∩ C) ≤ µ(B ∩ C)
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Proof of Theorem 2.2.1, Part 3

Proof.

Since f is upper semicontinuous on A and A is compact, f attains its maximum

at some B ∈ A

2) The theorem will be proved if we show that C ⊂ B:

Assume that C 6⊂ B, then since µ(A) = µ(B) = µ(C).

,and both C and B are closed, B \ C , C \ B, have positive µ-measure.

For x ∈ B \ C , y ∈ C \ B, H be the subspace of dimension n orthogonal to the

vector x-y, and define sH with respect to σH

Then,

1. σ(y) = x (x,y are in Sn, H is hyperplane)

2. p is not in H (if p is in H, the reflection of a point in C should be in C)

3. x ∈ S−, y ∈ S+ (d(y , p) ≤ d(x , p) ≤ d(σH(y), p))
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Proof of Theorem 2.2.1, Part 3

Proof.

By definition of density point, for δ > 0 small enough,

C(x , δ) ⊂ S−, σ(C(x , δ)) = C(y , δ) ⊂ S+,

µ((B \ C) ∩ C(x , δ)) ≥ 2µ(C(x , δ))/3, µ((C \ B) ∩ C(y , δ)) ≥ 2µ(C(y , δ))/3

Then, the set D = ((B \ C) ∩ C(x , δ)) ∩ σ((C \ B) ∩ C(y , δ)) satisfies

µ(D) ≥ µ(C(x , δ))/3 > 0,D ⊂ (B \ C) ∩ S− and σ(D) ⊂ C \ B (2.10)

,and (2.10) imply that σ(D) ⊂ B∗ ∩ C and σ(D) ∩ (B ∩ C)∗ = ∅

(∵ z ∈ (B ∩ C)∗ implies either z ∈ B ∩ C or σ(z) ∈ B ∩ C))
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Proof of Theorem 2.2.1, Part 3

Proof.

µ(B ∩ C) = µ((B ∩ C)∗) ≤ µ(B∗ ∩ C) (2.9)

(∵ (B ∩ C)∗ ⊂ (B∗ ∩ C)

1. x ∈ B ∩ C ∩ (S+ ∪ S0), we obviously have x ∈ B∗ ∩ C .

2. x ∈ B ∩ C ∩ S−, σ(x) ∈ B ∩ C , we obviously have x ∈ B∗ ∩ C .

3. x = σ(z), z ∈ B ∩ C ∩ S−, σ(z) 6∈ B ∩ C ,

σ(z) ∈ C(∵ z ∈ C), then σ(z) is not in B and therefore, x ∈ B∗ ∩ C . )
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Proof of Theorem 2.2.1, Part 3

Proof.

µ(B∗ ∩ C) ≥ µ((B ∩ C)∗ ∪ σ(D)) = µ((B ∩ C)∗) + µ(D) > µ((B ∩ C)∗),

,because B∗ ∈ A, contradicts the fact that f attain it maximum at B.

∴ C ⊂ B (In the book, C ∈ A )

Then, Cε ⊂ Bε, µ(Cε) ≤ µ(Bε) ≤ µ(Aε)
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Lebesgue’s density theorem

Theorem Lebesgue’s density

Let µ be the Lebesgue measure on the Euclidean space Rn and A be a

Lebesgue measurable subset of Rn. Define the approximate density of A, in a

ε-neighborhood of a point x in Rn as

dε(x) =

(
µ(A ∩ Bε(x))

µ(Bε(x))

)
,where Bε denotes the closed ball of radius ε centered at x. Lebesgue’s density

theorem asserts that for almost every point x of A, the density is

d(x) = limε→0dε(x) = 1
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Proof of Theorem 2.2.1, Part3 : A is compact

I A is closed, so it suffices to show that K is compact.

I Exercise 2.2.8

– Prove that (K,h), the space of nonempty compact subsets of Sn with the

Hausdorff distance, is a compact metric space.

– Hint:

1 : Show the map K 7→ C(Sn),A 7→ d(·,A) is an isometry

2 : Image in (C(Sn), ‖·‖∞) is compact.
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Proof of Theorem 2.2.1, Part3 : A is compact

Exercise 2.2.8.

x 7→ d(x ,A) is isometry :

I sup{|d(x ,A)− d(x ,B)| , x ∈ Sn} ≤ h(A,B), for A,B ∈ K

→

For ε < ε∗ < h(A,B), we can take x ∈ A−Bε(or we can take x ∈ B −Aε)

,and for εn ↗ ε, take xn ∈ A− Bεn

then x = lim xn is in A(∵ A is closed) ,d(x ,A) = 0

and d(xn,B) > εn n→∞ and d(x ,B) ≥ ε∗

I sup{|d(x ,A)− d(x ,B)| , x ∈ Sn} ≥ h(A,B), for A,B ∈ K

→ trivial
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Proof of Theorem 2.2.1, Part3 : A is compact

Exercise 2.2.8.

{d(·,A) : A ∈ K} is compact :

{d(x ,A) : x ∈ Sn,A ∈ K} is compact (∵ closed and bounded in R)

and {d(·,A) : A ∈ K} is equi-continuous

By Arzelà–Ascoli theorem, {d(·,A) : A ∈ K} is compact

K is compact :

inverse of isometry is continuous fucntion, and continuous function preserves

compactness.
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Arzelà–Ascoli theorem

Theorem Arzelà–Ascoli

Let X be a compact metric(Hausdorff) space, Y be a metric space,

F ⊂ Y X be the continuous family of functions. The followings are equivalent:

I F is compact set

I – F be the equi-continuous family of functions.

– for all x ∈ X , {f (x) : x ∈ F} ⊂ Y is compact set.
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2.2.2 The Gaussian Isoperimetric Inequality for the Standard

Gaussian Measure on RN
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2.2.2 The Gaussian Isopermetric Inequality for the Standard Gaussian

Measure onRN

I Isoperimetric inequality on the sphere → isoperimetric inequality for the

probability law γn of n independente N(0,1)

I By means of Poincare’s lemma.

I γn is the limit of the projection of the uniform distribution on
√
mSn+m

onto Rn when m→∞
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Preliminary

I gi , i ∈ N is a sequence of independent N(0,1) random variables.

I γn = L(g1, · · · , gn), standard Gaussian measure on Rn

I γ = L({gi}∞i=1), standard Gaussian measure on RN

(cylindrical σ-algebra C of RN.)

I Euclidean neighbourhoods Aε := {x ∈ Rn : d(x ,A) ≤ ε} = A + εOn

d : Euclidean destance, On : the closed ball centred at 0 ∈ Rn.
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Gaussian isoperimetric inequality and isoperimetric inequality on the sphere

I Gaussian isoperimetric inequality.

For n <∞, let γn be the standard Gaussian measure on Rn, let A be a

measurable subset of Rn, and let H be a half-space

H = {x ∈ Rn : 〈x , u〉 ≤ a}, u a unit vector, such that γn(H) = γn(A) and

hence with a := Φ−1(γn(A)), where Φ denotes the standard normal

distribution function. Then, for all ε > 0,

γn(H + εOn) ≤ γn(A + εOn) (2.12)

I (cf. isoperimetric inequality on the sphere)

Let A 6= ∅ be a measurable subset of Sn, and let C be a cap such that

µ(C) = µ(A). Then, for all ε > 0,

µ(Cε) ≤ µ(Aε) (2.4)
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Poincare’s lemma

Lemma 2.2.2 (Poincare’s lemma)

Let µn+m be the uniform distribution on
√
mSn+m, the sphere of Rn+m+1 of

radius
√
m and centered at the origin. Let πm be the orthogonal projection

Rn+m+1 7→ Rn = {x ∈ Rm+n+1 : xi = 0, n < i ≤ n + m + 1} and let π̃m be the

restriction of πm to
√
mSn+m. Let νm = µn+m ◦ π̃−1

m be the projection onto Rn

of µn+m. Then, νm has a density fm such that if φm is the density of νm,

limm→∞fm(x) = φm(x) for all x ∈ Rn Therefore,

νn(A) = limm→∞µn+m(π̃−1
m (A)) (2.11)

for all Borel sets A of Rn
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Proof of Poincare’s lemma

Proof.

Set Gn := (g1, . . . , gn) and Gm+n+1 := (g1, . . . , gm+n+1)

µn+m is the law
√
mGn+m+1/ |Gn+m+1|1/2.(rotational invariant)

For any measurable set A of Rn,

νm(A) =
1

(2π)(n+m+1)/2

∫
Rm+1

∫
Ã(y)

e−(|z|2+|y|2)/2dzdy ,

where,z ∈ Rn, y ∈ Rm+1, Ã =

{
z ∈ Rn :

√
m/(|z |2 + |y |2), z ∈ A

}
Make the change of variables

x =
√

m/(|z |2 + |y |2), (z = |y | x/
√

m − |x |2, |x | ≤
√
m)
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Proof of Poincare’s lemma

Proof.

νm(A) =
1

(2π)(n+m+1)/2∫
A

I(|x | ≤
√
m)

m

(m − |x |2)n/2 + 1

∫
Rm+1

|y |n exp
(
−1
2

m |y |2

m − |x |2

)
dydx

=
E(|Gm+1|n)

mn/2
1

(2π)n/2

∫
A

(
1− |x |

2

m

)(m−1)/2

I(|x | ≤
√
m)dx

Hence, the density of νm is

fm(x) = Cn,m(2π)−n/2(1− |x |2 /m)(m−1)/2)(I )(|x |2 < m), x ∈ (R)n

Clearaly, (2π)−n/2(1− |x |2 /m)(m−1)/2)(I )(|x |2 < m)→ (2π)−n/2e|x|
2/2

,for all x as m→∞
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Proof of Poincare’s lemma

Proof.

For 0 ≤ a < m and m ≥ 2, we have 1− a/m ≤ e−a/2(m−1), it follows that

(1− |x |2 /m)(m−1)/2)(I )(|x |2 < m) is dominated by e−|x|
2/4

Thus, by dominated convergence theorem, fm(x)/Cn,m → (2π)−n/2e|x|
2/2 in L1

(which impies that C−1
n,m → 1)
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Theorem 2.2.3

Theorem 2.2.3

For n <∞, let γn be the standard Gaussian measure of Rn, let A be a

measurable subsets of Rn, and let A be a measurable subset of Rn, and let H

be a half-space H = {x ∈ Rn : 〈x , u〉 ≤ a}, u a unit vector, such that

γn(H) = γn(A) and hence with a := Φ−1(γn(A)), where Φ−1 denots the

standard normal distribution function. Then, for all ε > 0,

γn(H + εOn) ≤ γn(A + εOn), (2.12)

which, by the definition of a, is equivalent to

γn(A + εOn) ≥ Φ(Φ−1(γn(A)) + ε) (2.13)
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Proof of Theorem 2.2.3

Proof.

For −
√
m < b <

√
m, define a half-space Hb := {x ∈ Rn : 〈x , u〉 ≤ b}, and

its pre-image of π̃ , π̃−1(Hb) is a nonempty cap.

For 0 < ε <
√
m − b, we have

(π̃−1(Hb))ε = π̃−1(Hb + τ(b, ε)On) = π̃−1(Hb+τ(b,ε)), where

b + τ =
√
m cos

(
cos−1 b√

m
± ε√

m

)
which, taking limts in the addition formula for the cosine, immediately gives

lim
m→∞

τ(b, ε) = ε
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Proof of Theorem 2.2.3

Proof.

Take b < a = Φ−1(γn(A)) , so that Hb ⊂ H = {x ∈ Rn : 〈x , u〉 ≤ a}.

Then, by Poincare’s lemma,

lim
m
µn+m

(
π̃−1
m (A)

)
= γn(A) > γn(Hb) = lim

m
µn+m

(
π̃−1
m (Hb)

)
,

That is, for all m large enough, µn+m(π̃−1
m (A)) ≥ µn+m(π̃−1

m (Hb)), by the

isoperimetric inequality for µn+m (Theorem 2.2.1) yields that for each

ε > 0, b + ε <
√
m,

µn+m

(
(π̃−1

m (A))ε
)
≥ µn+m

(
π̃−1
m ((Hb))ε

)
= µn+m

(
π̃−1
m (Hb+τ(b,ε))

)
By Poincare’s lemma again,

γn(A+εOn) ≥ lim sup
m

µn+m

(
(π̃−1

m (A))ε
)
≥ lim sup

m
µn+m

(
π̃−1
m (Hb+τ(b,ε))

)
= γn(Hb+ε)

Since, this holds for all b<a, it also holds with b replaced by a.
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Theorem 2.2.4

Theorem 2.2.4

Let A a Borel set of RN(A ∈ C), and γ be the probability law of (gi : i ∈ N).

Let O denote the unit ball about zero of l2 ⊂ RN,O = {x ∈ RN :
∑
i

x2
i ≤ 1}.

Then, for all ε > 0,

γ(A + εO) ≥ Φ(Φ−1(γ(A)) + ε). (2.14)
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Proof of Theorem 2.2.4

The proof is indicated in Exercises 2.2.5 throug 2.2.7.

I Exercise 2.2.5

– Let πn : RN 7→ Rn be the projection. Then, show that (a) γn = γ ◦ π−1
n , (b)

if K ⊂ RN is compact, then K = ∩∞n=1(πn(K)), and (c) K+tO, where O is

the closed unit ball of l2, is compact if K is

I Exercise 2.2.6

– Use Theorem 2.2.3 and Exercise 2.2.5 to prove Threorem 2.2.4 in the

particular case where A is a compact set

I Exercise 2.2.7

– Since RN is polish, it follows that γ is tight(Proposition 2.1.4). Use this and

Exercise 2.2.2 to prove Theorem 2.2.4 for any A ∈ C
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2.2.3 Application to Gaussian Concentration
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2.2.3 Application to Gaussian Concentration

I Translate the isoperimetric inequality into a concentration inequality for

funcion {gi}ni=1 about their medians.

I A bound for γ(|f (x)−M| > ε} for all ε > 0.

I For Lipschitz functions f about their medians

I For the supremum norm of a separable Gaussian process X, when

sup
t∈T
|X (t)| <∞ a.s.
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2.2.3 Application to Gaussian Concentration

Definition 2.2.5

A function f : RN 7→ R is Lipschitz in the direction of l2, or l2-Lipschitz for

short, if it is meaurable and if

‖f ‖Lip2 := sup

{
|f (x)− f (y)|
|x − y | : x , y ∈ RN, x 6= y , x − y ∈ l2

}
<∞

where |x − y | is the l2 norm of x-y.
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Theorem 2.2.6

Theorem Theorem 2.2.6

If f is an l2-Lipschitz function on RN, and if Mf is its median with respect to γ,

then,

γ{x : f (x) ≥ Mf + ε} ≤ (1− Φ(ε/‖f ‖Lip2)),

γ{x : f (x) ≤ Mf − ε} ≤ (1− Φ(ε/‖f ‖Lip2)),
(2.15)

in particular,

γ{x : |f (x)−Mf | ≥ ε} ≤ 2(1− Φ(ε/‖f ‖Lip2)) ≤ e−ε
2/2‖f ‖2Lip2 (2.16)

for all ε > 0
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Proof of 2.2.6

Proof.

Let A+ = {x ∈ RN : f (x) ≥ Mf } and A− = {x ∈ RN : f (x) ≤ Mf }.

Then γ(A+) ≥ 1/2, γ(A−) ≥ 1/2.

If x ∈ A+ + εO, then there exists h ∈ O such that x − εh ∈ A+,

hence, f (x − εh) ≥ Mf and f (x) + ε‖f ‖Lip2 ≥ f (x − εh) ≥ Mf ; that is

A+ + εO ⊂ {x : f (x) ≥ Mf − ε‖f ‖Lip2}.

Then the Gaussian isoperimetric inequality for A = A+ gives (recall

Φ−1(1/2) = 0)

γ{f < Mf − ε‖f ‖Lip2} ≤ 1− γ(A+ + εO) ≤ 1− Φ(ε),

,which is the second inequality in (2.15)

Likewise, A− + εO ⊂ {x : f (x) ≤ Mf + ε‖f ‖Lip2} gives the first inequality in

(2.15)

Finally (2.16) follows by (2(1− Φ(x)) ≤ e−u2/2,Exercise2.2.8)
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Theorem 2.2.7

Theorem 2.2.7 (The Borell-Sudakov-Tsirelson concentraion inequality for

Gaussian process)

Let X (t), t ∈ T , be a centred separable Gaussian process such that

Pr{sup
t∈T
|X (t)| <∞} > 0, and let M be the median of sup

t∈T
|X (t)| and σ2 the

supremum of the variances EX 2(t). Then for all ε > 0,

Pr

{
sup
t∈T
|X (t)| > M + u

}
≤ 1−Φ(u/σ),Pr

{
sup
t∈T
|X (t)| < M − u

}
≤ 1−Φ(u/σ)

(2.17)

and hence,

Pr

{∣∣∣∣sup
t∈T
|X (t)| −M

∣∣∣∣ > u

}
≤ 2(1− Φ(u/σ)) ≤ e−u2/2σ2

(2.18)
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Proof of Theorem 2.2.7

Proof.

X (t), t ∈ T , be a separable centred Gaussian process such that

Pr{sup
t∈T
|X (t)| <∞} > 0. Then sup

t∈T
|X (t)| = sup

t∈T0

|X (t)| <∞ a.s., where

T0 = {tk}∞k=1 is a countable subset of T.

Ortho-normalizing (in L2(Pr)), the jointly normal sequence {X (tk)} yields

X (tk) =
k∑

i=1
akigi , then there exists a version X̃ ,

X̃ : RN 7→ R, X̃ (tk , x) =
k∑

i=1
aikxi

Now, define a function f : RN 7→ R by

f (x) = sup
k

∣∣∣∣∣
k∑

i=1

akixi

∣∣∣∣∣
The probability law of f under γ is the same as the law of sup

t∈T0

|X (t)|, and

sup
t∈T
|X (t)|.
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Proof of Theorem 2.2.7

Proof.

If h ∈ O, th unit ball of l2, by Cauchy-Schwarz,

|f (x + h)− f (x)|2 ≤ sup
k

∣∣∣∣∣
k∑

i=1

akihi

∣∣∣∣∣ ≤ sup
k

[
k∑

i=1

a2
ki

k∑
i=1

h2
i

]
≤ sup

k

k∑
i=1

a2
ki = sup

k
EX 2(tk)

Therefore,

‖f ‖Lip2 ≤ σ2, where σ2 := σ2(X ) := sup
t∈T

EX 2(t)

Then, applies Theorem 2.2.6 to the fucntion f.
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If we integrate in (2.18) and let g be a N(0,1) random variable, we obtain,∣∣∣∣E sup
t∈T
|X (t)| −M

∣∣∣∣ ≤ E

∣∣∣∣sup
t∈T
|X (t)| −M

∣∣∣∣ ≤ σE |g | =
√

2/πσ, (2.19)

an inequality which is interesting in its own right and which gives, by

combining with the same(2.18),

Pr

{∣∣∣∣sup
t∈T
|X (t)| − E sup

t∈T
|X (t)|

∣∣∣∣ > u +
√

2/πσ
}
≤ e−u2/2σ2

(2.20)

which is of the right order for large values of u. We complete this section with

simple applications of Theorem 2.2.7 to integrability and moments of the

supremum of a Gaussian processes.
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Corollary 2.2.8

Corollary 2.2.8

Let X (t), t ∈ T , be a Gaussian process as in Theorem 2.2.7. Let M and σ also

be as in this theorem, and write ‖X‖ := sup
t∈T
|X (t)| to ease notation. Then

there exists K <∞ such that with the same hyperthesis and notation as in the

preceding corollary, for all p ≥ 1,

(E(‖X‖p)1/p ≤ 2E‖X‖+ (E |g |p)1/p ≤ K
√
pE‖X‖

for some absolute constant K.

Proof.

Just integrate inequality (2.18) with respect to ptp−1dt and then use that

M ≤ 2E‖X‖(by Chebyshev) and that σ ≤
√
π/2 sup

t∈T
E |X (t)|. (and see

Exercise 2.1.2)
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Corollary 2.2.9

Corollary 2.2.9

Let X (t), t ∈ T , be a Gaussian process as in Theorem 2.2.7, and let ‖X‖, M

and σ be as in Corollary 2.2.8. Then,

lim
u→∞

1
u2 logPr{‖X‖ > u} = − 1

2σ2

and

Eeλ‖X‖
2
<∞ if and only if λ <

1
σ2
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Proof of Corollary 2.2.9

Proof.

The first limit follows from the facts that the first inequality in (2.17) can be

rewritten as
1

(u −M)2 logPr{‖x‖ > u} ≤ − 1
σ2

Pr{‖X‖ > u} ≥ Pr{|X (t)| > u} for all t ∈ T and for a N(0,1) variable g, we

do have u−2 logPr{|g | > u/a} → −1/2a2(by l ′Hôpital ′s rule).

For the second statement, just apply the first limit to Eeλ‖X‖ =

1 +
∫∞
0

∫ λ‖X‖2
0 evdvdL(‖X‖)(u) = 1 +

∫∞
0 evPr{‖X‖ >

√
v/λ}dv
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