Mathematical Foundations of Infinite-Dimensional Statistical Models:

2.2 Isoperimetric Inequality with Applications to Concentration

이종진

Seoul National University

ga0408@snu.ac.kr

July 06, 2018

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

1/40

Table of Contents

2.2 Isoperimetric Inequalities with Applications to Concentration

2.2.1 The Isoperimetric Inequality on the Sphere

2.2.2 The Gaussian Isoperimetric Inequality for the Standard Gaussian Measure on $\mathbb{R}^{\mathbb{N}}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

2.2.3 Application to Gaussian Concentration

Isoperimetric Inequalities with Applications to Concentration.

To obtain the best possible concentration inequality with respect to the standard Gaussian measure

- For Lipschitz functions f about their medians
- For the supremum norm of a separable Gaussian process X, when $\sup_{t\in\mathcal{T}}|X(t)|<\infty \text{ a.s.}$
- 1. Prove Isoperimetric inequality on the sphere.
- 2. Prove Gaussian isoperimetric inequality.
- 3. Obtain Gaussian concentration inequality.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

2.2.1 The Isoperimetric Inequality on the Sphere

Preliminary

►
$$S^n = \{x \in \mathbb{R}^n : ||x||^2 = \sum_{i=1}^{n+1} x_i^2 = 1\},$$

where $x = (x_1, ..., x_{n+1});$

- ▶ p is the north pole, p=(0,...,0,1) (could be an arbitrary point in S^n)
- μ is the uniform probability distribution on S^n .
- ▶ d is the geodesic distance on Sⁿ
- C(x,ρ) is a closed cap centered at a point x ∈ Sⁿ with a radius ρ, C(x,ρ) := {y : d(x, y) ≤ ρ}
- A_ε is ε-neighbourhood of a set A, A_ε := {x : d(x, A) ≤ ε}, and d(x,A) = inf{d(x, y) : y ∈ A}

Theorem 2.2.1

Let $A \neq \emptyset$ be a measurable subset of S^n , and let C be a cap such that $\mu(C) = \mu(A)$. Then, for all $\epsilon > 0$,

$$\mu(C_{\epsilon}) \le \mu(A_{\epsilon}) \tag{2.4}$$

The isoperimetric inequality on the sphere states that the caps are the sets of shortest perimeter among all measurable sets of a given surface area.

Proof of Theorem 2.2.1

Proof.

If $\mu(A) = 0$, then C consists of a single point, and (2.4) holds.

If $\mu(A) \neq 0$, It suffices to prove the theorem for A compact.

(:.) There exists A^m compact, $A^m \subset A$, A^m increasing and such that

 $\mu(A^m) \nearrow \mu(A)$. Let C^m be caps with the same centred as C and with

 $\mu(C^m) = \mu(A^m)$. since the measuer of a cap is continuous one to one function, we have $\mu(C^m) \nearrow \mu(C)$.

because A^m is compact, $\mu(A^m_{\epsilon}) \geq \mu(C^m_{\epsilon})$

 $\therefore \mu(A_{\epsilon}) \geq \lim \mu(A^{m}_{\epsilon}) \geq \lim \mu(C^{m}_{\epsilon}) \geq \mu(C_{\epsilon})$

Proof.

We Assume A is compact and $\mu(A) \neq 0$ from now.

The rest of proof is divided into three parts

- Part 1: Construction and main properties of the symmetrisation operation.(A* is called a symmetrisation of A)
- Part 2: Defining a certain collection of compact sets A containing A and proving properties of A

イロト イワト イヨト イヨト ヨー のくで

3. Part 3: Completion of the proof of Theorem 2.2.1.

- Construct transformation A → A* on measurable subsets of the sphere that preserves area (μ(A) = μ(A*)), and decrease perimeter μ(A*)) ≤ (μ(A_ε).
- ► H is n-dimensional subspace (H ⊂ ℝⁿ⁺¹) that does not contain the north pole p.

• $\sigma = \sigma_H$ be the reflection about H. (\rightarrow property : for x,y on the same half-space.)

$$d(x,y) \le d(x,\sigma(y)) \tag{2.5}$$

うして ふゆう ふほう ふほう うんの

- S_+ is the open hemisphere that contains p.
- \triangleright *S*₋ is the other hemisphere.

$$\blacktriangleright S_0 = S^n \cap H$$

8/40

• The symmetrisation of A with respect to $\sigma = \sigma_H$,

 $s_H = A^*$ is defined as

$$s_{\mathcal{H}}(A) = A^*$$
$$= [A \cap (S_+ \cup S_0)] \cup \{a \in A \cap S_- : \sigma(a) \in A\}$$
$$\cup \{\sigma(a) : a \in A \cap S_-, \sigma(a) \notin A\}$$
$$(2.6)$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

9/40

The symmetrisation should have two properties

(i) $\mu(A) = \mu(A^*)$ (ii) $\mu(A_{\epsilon}) \leq \mu(A^*_{\epsilon})$

(i) $\mu(A) = \mu(A^*)$

Three sets in the defition are disjoint, $\mu\{\sigma(a) : a \in A \cap S_-, \sigma(a) \notin A\} = \mu\{a \in A \cap S_- : \sigma(a) \notin A\}$ implies

$$\mu(A^*) = \mu(A), \ A \in \mathcal{B}(S^{n+1})$$
(2.7)

(ii) $\mu(A_{\epsilon}) \leq \mu(A_{\epsilon}^*)$

we prove more, for all $A \in \mathcal{B}(S^{n+1})$ and $\epsilon > 0$, then

$$(A^*)_{\epsilon} \subset (A_{\epsilon})^*,$$
 hence $\mu((A^*)_{\epsilon}) \leq \mu((A_{\epsilon})^*) = \mu(A_{\epsilon}).$ (2.8)

< □ > < 큔 > < 볼 > < 볼 > 별 = · · ○ < ♡ < ○ 10/40

proof of (2.8).

For $x \in (A^*)_{\epsilon}$, let $y \in A^*$ such that $d(x, y) \leq \epsilon$

1) when \times and y lay on different half-spaces,

Using (2.5) and σ is involutive isometry we obtain,

$$d(\sigma(x), y) = d(x, \sigma(y)) \le d(\sigma(x), \sigma(y)) = d(x, y) \le \epsilon$$

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

11/40

since, $y \in A^*$ implies that $y \in A$ or $\sigma(y) \in A$, in either case $x \in A_{\epsilon}$ and $\sigma(x) \in A_{\epsilon}$ $\therefore x \in (A_{\epsilon})^*$

proof of (2.8).

2) when x and y are in S_{-} ,

The following inequalites still holds,

$$d(\sigma(x),\sigma(y)) = d(x,y) \leq \epsilon$$

since, $y \in A^*$ and $y \in S_-$, $y \in A$ and $\sigma(y) \in A$, therefore, $x \in A_{\epsilon}$ and $\sigma(x) \in A_{\epsilon}$ $\therefore x \in (A_{\epsilon})^*$ 3) when x and y are in S_+ , $y \in A$ or $\sigma(y) \in A$, therefore, $x \in A_{\epsilon}$ or $\sigma(x) \in A_{\epsilon}$ and $x \in S_+$

 $\therefore x \in (A_{\epsilon})^*$

< □ > < 큔 > < 볼 > < 볼 > 별 = · · ○ < ♡ < ○ 11/40

proof of (2.8).

4) when x are in S_0 ,

 $y \in A$ implies that $y \in A$ or $\sigma(y) \in A$, therefore $x \in A_{\epsilon}$ or $\sigma(x) \in A_{\epsilon}$ and $x \in S_0$ means $x = \sigma(x)$ $\therefore x \in (A_{\epsilon})^*$ 5) when y are in S_0 , $y \in A$ implies that $y = \sigma(y) \in A$, therefore $x \in A_{\epsilon}$ and $\sigma(x) \in A_{\epsilon}$ $\therefore x \in (A_{\epsilon})^*$

 $\therefore (A^*)_\epsilon \subset (A_\epsilon)^*$

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

- (*K*,h) denotes the set of nonempty compact subsets of Sⁿ equipped with the Hausdorff distance.
- ▶ h is Hausdorff distance, $h(A, B) = inf \{ \epsilon : A \subset B_{\epsilon}, B \subset A_{\epsilon} \}$
- ➤ A is the minimal closed subset of K that contain A and is preserved by s_H for all n-dimensional subspaces H of ℝⁿ⁺¹ that do not contain the north pole (K is a closed {s_H}-invariant cooloction of sets that contain A.)
- ▶ (If $A \in A$, then $s_H(A) \in A$ for all H with $p \notin H$)
- Proving of the following claim is main purpose of part 2

<u>Claim</u>: If $B \in \mathcal{A}$, then

(a) $\mu(B) = \mu(A)$, and (b) for all $\epsilon > 0$, $\mu(B_{\epsilon}) \le \mu(A_{\epsilon})$

Proof.

It suffices to show that the collection of closed sets \mathcal{F} satisfying (a) and (b) is preserved by s_H for all H not containing p and is closed subset of \mathcal{K} . (\because minimality of A)

1) preserved by s_H for all H not containing p:

For $B \in \mathcal{F}$, $B^* = s_H(B)$ by (2.7), $\mu(B^*) = \mu(B) = \mu(A) \cdots (a)$ by (2.8), $\mu((B^*)_{\epsilon}) \leq \mu(B_{\epsilon}) \leq \mu(A_{\epsilon}) \cdots (b)$ $\therefore B^* = s_H(B) \in \mathcal{F}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Proof.

2) closed subset of \mathcal{K} :

Let $B^n \in \mathcal{F}$ and $h(B^n, B) \to 0$.

Let $\epsilon > 0$ be fixed. Given $\delta > 0$, there exists n_{δ} such that $B \subset B_{\delta}^{n}$ Then, for all $n \ge n_{\delta}$, $\mu(B_{\epsilon}) \le \mu(B_{\delta+\epsilon}^{n}) \le \mu(A_{\delta+\epsilon})$ Letting $\delta \searrow 0$, B satisfies condition (b) Letting $\epsilon \searrow 0$, $\mu(B) \le \mu(A)$ and, for all n large enough, $B^{n} \subset B_{\delta}$, then, we get that $\mu(A) = \mu(B^{n}) \le \mu(B_{\delta})$ letting $\delta \searrow 0$ $\mu(A) \le \mu(B)$, $\mu(A) = \mu(B)$, B satisfies condition (a). $\therefore B \in \mathcal{F}$ and \mathcal{F} is a closed subset of \mathcal{K} .

13/40

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ

Because of the claim about A,

it suffices to show that if C is the cap centred at p such that

 $\mu(A) = \mu(C)$, then $C \in A$

ightarrow Instead, $\mu(C_{\epsilon}) \leq \mu(A_{\epsilon})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof.

Define $f(B) = \mu(B \cap C), B \in \mathcal{A}$

1) f is upper semicontinuous on A:

For any $B, B^n \in \mathcal{A}$ such that $h(B, B^n) \to 0$,

Given $\delta > 0$, for all n large enough, $B^n \subset B_{\delta}$, and it implies

 $B^n \cap C \subset B_\delta \cap C$ (In book, $B^n \cap C \subset (B \cap C_\delta)_\delta$)

Hence, $limsup_n\mu(B^n \cap C) \leq \mu(B_{\delta} \cap C)$

B and C are closed, if $\delta_n \searrow 0$, then $\cap_n(B_{\delta_n} \cap C) = B \cap C$

 $\therefore \limsup_n \mu(B^n \cap C) \leq \mu(B \cap C)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Proof.

Since f is upper semicontinuous on $\mathcal A$ and $\mathcal A$ is compact, f attains its maximum at some $B\in\mathcal A$

2) The theorem will be proved if we show that $C \subset B$:

Assume that $C \not\subset B$, then since $\mu(A) = \mu(B) = \mu(C)$.

,and both C and B are closed, $B \setminus C$, $C \setminus B$, have positive μ -measure.

For $x \in B \setminus C, y \in C \setminus B$, H be the subspace of dimension n orthogonal to the vector x-y, and define s_H with respect to σ_H

Then,

1. $\sigma(y) = x$ (x,y are in S^n , H is hyperplane)

2. p is not in H (if p is in H, the reflection of a point in C should be in C)

3. $x \in S_{-}, y \in S_{+}$ $(d(y,p) \le d(x,p) \le d(\sigma_{H}(y),p))$

▲□▶ ▲圖▶ ▲콜▶ ▲콜▶ 콜 · 의식(?) 15/40

Proof.

By definition of density point, for $\delta > 0$ small enough, $C(x, \delta) \subset S_{-}, \sigma(C(x, \delta)) = C(y, \delta) \subset S_{+},$ $\mu((B \setminus C) \cap C(x, \delta)) \ge 2\mu(C(x, \delta))/3, \ \mu((C \setminus B) \cap C(y, \delta)) \ge 2\mu(C(y, \delta))/3$ Then, the set $D = ((B \setminus C) \cap C(x, \delta)) \cap \sigma((C \setminus B) \cap C(y, \delta))$ satisfies

$$\mu(D) \ge \mu(C(x,\delta))/3 > 0, D \subset (B \setminus C) \cap S_{-} \text{ and } \sigma(D) \subset C \setminus B$$
(2.10)

,and (2.10) imply that $\sigma(D) \subset B^* \cap C$ and $\sigma(D) \cap (B \cap C)^* = \emptyset$ ($\because z \in (B \cap C)^*$ implies either $z \in B \cap C$ or $\sigma(z) \in B \cap C$))

< □ ▶ < 큔 ▶ < 글 ▶ < 글 ▶ ○ < ♡ < ○ 15/40

Proof.

$$\mu(B \cap C) = \mu((B \cap C)^*) \le \mu(B^* \cap C)$$
(2.9)

 $(:: (B \cap C)^* \subset (B^* \cap C)$

1. $x \in B \cap C \cap (S_+ \cup S_0)$, we obviously have $x \in B^* \cap C$.

- 2. $x \in B \cap C \cap S_{-}, \sigma(x) \in B \cap C$, we obviously have $x \in B^* \cap C$.
- 3. $x = \sigma(z), z \in B \cap C \cap S_{-}, \sigma(z) \notin B \cap C$,

 $\sigma(z) \in C(: z \in C)$, then $\sigma(z)$ is not in B and therefore, $x \in B^* \cap C$.)

< □ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 월 ∽ Q ↔ 15/40

Proof.

$$\mu(B^*\cap C)\geq \mu((B\cap C)^*\cup \sigma(D))=\mu((B\cap C)^*)+\mu(D)>\mu((B\cap C)^*),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

,because $B^* \in \mathcal{A}$, contradicts the fact that f attain it maximum at B. $\therefore C \subset B$ (In the book, $C \in \mathcal{A}$) Then, $C_{\epsilon} \subset B_{\epsilon}, \mu(C_{\epsilon}) \leq \mu(B_{\epsilon}) \leq \mu(A_{\epsilon})$

15/40

Theorem Lebesgue's density

Let μ be the Lebesgue measure on the Euclidean space \mathbb{R}^n and A be a Lebesgue measurable subset of \mathbb{R}^n . Define the approximate density of A, in a ϵ -neighborhood of a point x in \mathbb{R}^n as

$$d_{\epsilon}(x) = \left(rac{\mu(A \cap B_{\epsilon}(x))}{\mu(B_{\epsilon}(x))}
ight)$$

where B_{ϵ} denotes the closed ball of radius ϵ centered at x. Lebesgue's density theorem asserts that for almost every point x of A, the density is

$$d(x) = \lim_{\epsilon \to 0} d_{\epsilon}(x) = 1$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

≣ ∽ < ↔ 16/40

Proof of Theorem 2.2.1, Part3 : A is compact

- \mathcal{A} is closed, so it suffices to show that \mathcal{K} is compact.
- Exercise 2.2.8
 - Prove that (*K*,h), the space of nonempty compact subsets of Sⁿ with the Hausdorff distance, is a compact metric space.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

17/40

- Hint:
 - 1 : Show the map $\mathcal{K}\mapsto C(S^n), A\mapsto d(\cdot,A)$ is an isometry
 - 2 : Image in $(C(S^n), \|\cdot\|_{\infty})$ is compact.

Proof of Theorem 2.2.1, Part3 : A is compact

Exercise 2.2.8.

 \rightarrow trivial

- $x \mapsto d(x, A)$ is isometry :
 - sup{|d(x, A) d(x, B)|, x ∈ Sⁿ} ≤ h(A, B), for A, B ∈ K
 →
 For ε < ε^{*} < h(A, B), we can take x ∈ A B_ε(or we can take x ∈ B A_ε), and for ε_n ∧ ε, take x_n ∈ A B_{εn}
 then x = lim x_n is in A(∵ A is closed), d(x, A) = 0
 and d(x_n, B) > ε_n n → ∞ and d(x, B) ≥ ε^{*}
 sup{|d(x, A) d(x, B)|, x ∈ Sⁿ} ≥ h(A, B), for A, B ∈ K

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

Proof of Theorem 2.2.1, Part3 : A is compact

Exercise 2.2.8.

 $\{d(\cdot, A) : A \in \mathcal{K}\}$ is compact :

 $\{d(x, A) : x \in S^n, A \in \mathcal{K}\}$ is compact (: closed and bounded in \mathbb{R})

and $\{d(\cdot, A) : A \in \mathcal{K}\}$ is equi-continuous

By Arzelà–Ascoli theorem, $\{d(\cdot, A) : A \in \mathcal{K}\}$ is compact

${\cal K}$ is compact :

inverse of isometry is continuous fucntion, and continuous function preserves compactness.

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

Theorem Arzelà-Ascoli

Let X be a compact metric(Hausdorff) space, Y be a metric space,

 $\mathcal{F} \subset Y^X$ be the continuous family of functions. The followings are equivalent:

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 うらぐ

19/40

- ▶ *F* is compact set
- F be the equi-continuous family of functions.
 - for all $x \in X$, $\{f(x) : x \in \mathcal{F}\} \subset Y$ is compact set.

2.2.2 The Gaussian Isoperimetric Inequality for the Standard Gaussian Measure on $\mathbb{R}^{\mathbb{N}}$

2.2.2 The Gaussian Isopermetric Inequality for the Standard Gaussian Measure on $\mathbb{R}^{\mathbb{N}}$

- Isoperimetric inequality on the sphere → isoperimetric inequality for the probability law *γ_n* of n independente N(0,1)
- By means of Poincare's lemma.
- ▶ γ_n is the limit of the projection of the uniform distribution on $\sqrt{m}S^{n+m}$ onto \mathbb{R}^n when $m \to \infty$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

Preliminary

- ▶ $g_i, i \in \mathbb{N}$ is a sequence of independent N(0,1) random variables.
- $\gamma_n = \mathcal{L}(g_1, \cdots, g_n)$, standard Gaussian measure on \mathbb{R}^n
- γ = L({g_i}[∞]_{i=1}), standard Gaussian measure on ℝ^N
 (cylindrical σ-algebra C of ℝ^N.)
- ► Euclidean neighbourhoods A_ε := {x ∈ ℝⁿ : d(x, A) ≤ ε} = A + εO_n d : Euclidean destance, O_n : the closed ball centred at 0 ∈ ℝⁿ.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

Gaussian isoperimetric inequality and isoperimetric inequality on the sphere

Gaussian isoperimetric inequality.

For $n < \infty$, let γ_n be the standard Gaussian measure on \mathbb{R}^n , let A be a measurable subset of \mathbb{R}^n , and let H be a half-space $H = \{x \in \mathbb{R}^n : \langle x, u \rangle \leq a\}$, u a unit vector, such that $\gamma_n(H) = \gamma_n(A)$ and hence with $a := \Phi^{-1}(\gamma_n(A))$, where Φ denotes the standard normal distribution function. Then, for all $\epsilon > 0$,

$$\gamma_n(H + \epsilon O_n) \le \gamma_n(A + \epsilon O_n) \tag{2.12}$$

(cf. isoperimetric inequality on the sphere)
 Let A ≠ Ø be a measurable subset of Sⁿ, and let C be a cap such that µ(C) = µ(A). Then, for all ε > 0,

$$\mu(C_{\epsilon}) \le \mu(A_{\epsilon}) \tag{2.4}$$

◆□ → < □ → < 三 → < 三 → 三 · ○ Q (?) 23/40</p>

Poincare's lemma

Lemma 2.2.2 (Poincare's lemma)

Let μ_{n+m} be the uniform distribution on $\sqrt{m}S^{n+m}$, the sphere of \mathbb{R}^{n+m+1} of radius \sqrt{m} and centered at the origin. Let π_m be the orthogonal projection $\mathbb{R}^{n+m+1} \mapsto \mathbb{R}^n = \{x \in \mathbb{R}^{m+n+1} : x_i = 0, n < i \le n+m+1\}$ and let $\tilde{\pi}_m$ be the restriction of π_m to $\sqrt{m}S^{n+m}$. Let $\nu_m = \mu_{n+m} \circ \tilde{\pi}_m^{-1}$ be the projection onto \mathbb{R}^n of μ_{n+m} . Then, ν_m has a density f_m such that if ϕ_m is the density of ν_m , $\lim_{m\to\infty} f_m(x) = \phi_m(x)$ for all $x \in \mathbb{R}^n$ Therefore,

$$\nu_n(A) = \lim_{m \to \infty} \mu_{n+m}(\tilde{\pi}_m^{-1}(A))$$
(2.11)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

24/40

for all Borel sets A of \mathbb{R}^n

Proof of Poincare's lemma

Proof.

Set $G_n := (g_1, \ldots, g_n)$ and $G_{m+n+1} := (g_1, \ldots, g_{m+n+1})$ μ_{n+m} is the law $\sqrt{m}G_{n+m+1}/|G_{n+m+1}|^{1/2}$.(rotational invariant) For any measurable set A of \mathbb{R}^n ,

$$\nu_m(A) = \frac{1}{(2\pi)^{(n+m+1)/2}} \int_{\mathbb{R}^{m+1}} \int_{\hat{A}(y)} e^{-(|z|^2 + |y|^2)/2} dz dy,$$

where, $z \in \mathbb{R}^n, y \in \mathbb{R}^{m+1}, \tilde{A} = \left\{ z \in \mathcal{R}^n : \sqrt{m/(|z|^2 + |y|^2)}, z \in A \right\}$

Make the change of variables

$$x = \sqrt{m/(|z|^2 + |y|^2)}, (z = |y| x/\sqrt{m - |x|^2}, |x| \le \sqrt{m})$$

< □ ▶ < 큔 ▶ < 토 ▶ < 토 ▶ ○ ♀ ♡ ♀ (?) 25/40

Proof of Poincare's lemma

Proof.

$$\begin{split} \nu_m(A) &= \frac{1}{(2\pi)^{(n+m+1)/2}} \\ &\int_A \mathrm{I}(|x| \le \sqrt{m}) \frac{m}{(m-|x|^2)^n/2 + 1} \int_{\mathbb{R}^{m+1}} |y|^n \exp\left(-\frac{1}{2} \frac{m|y|^2}{m-|x|^2}\right) dy dx \\ &= \frac{E(|G_{m+1}|^n)}{m^{n/2}} \frac{1}{(2\pi)^{n/2}} \int_A \left(1 - \frac{|x|^2}{m}\right)^{(m-1)/2} \mathrm{I}(|x| \le \sqrt{m}) dx \end{split}$$

Hence, the density of ν_m is $f_m(x) = C_{n,m}(2\pi)^{-n/2}(1 - |x|^2 / m)^{(m-1)/2}(I)(|x|^2 < m), x \in (R)^n$ Clearaly, $(2\pi)^{-n/2}(1 - |x|^2 / m)^{(m-1)/2}(I)(|x|^2 < m) \rightarrow (2\pi)^{-n/2}e^{|x|^2/2}$,for all x as $m \rightarrow \infty$

< □ ▶ < 큔 ▶ < 토 ▶ < 토 ♪ ♡ < ♡ 25/40

Proof.

For $0 \le a < m$ and $m \ge 2$, we have $1 - a/m \le e^{-a/2(m-1)}$, it follows that $(1 - |x|^2 / m)^{(m-1)/2}(I)(|x|^2 < m)$ is dominated by $e^{-|x|^2/4}$ Thus, by dominated convergence theorem, $f_m(x)/C_{n,m} \to (2\pi)^{-n/2}e^{|x|^2/2}$ in L_1 (which impies that $C_{n,m}^{-1} \to 1$)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

Theorem 2.2.3

Theorem 2.2.3

For $n < \infty$, let γ_n be the standard Gaussian measure of \mathbb{R}^n , let A be a measurable subsets of \mathcal{R}^n , and let A be a measurable subset of \mathbb{R}^n , and let H be a half-space $H = \{x \in \mathbb{R}^n : \langle x, u \rangle \leq a\}$, u a unit vector, such that $\gamma_n(H) = \gamma_n(A)$ and hence with $a := \Phi^{-1}(\gamma_n(A))$, where Φ^{-1} denots the standard normal distribution function. Then, for all $\epsilon > 0$,

$$\gamma_n(H + \epsilon O_n) \le \gamma_n(A + \epsilon O_n), \tag{2.12}$$

which, by the definition of a, is equivalent to

$$\gamma_n(A + \epsilon O_n) \ge \Phi(\Phi^{-1}(\gamma_n(A)) + \epsilon)$$
(2.13)

< □ > < 큔 > < 볼 > < 볼 > 볼 · 의 < ♡ < ℃ 26/40

Proof.

For $-\sqrt{m} < b < \sqrt{m}$, define a half-space $H_b := \{x \in \mathbb{R}^n : \langle x, u \rangle \le b\}$, and its pre-image of $\tilde{\pi}$, $\tilde{\pi}^{-1}(H_b)$ is a nonempty cap. For $0 < \epsilon < \sqrt{m} - b$, we have $(\tilde{\pi}^{-1}(H_b))_{\epsilon} = \tilde{\pi}^{-1}(H_b + \tau(b,\epsilon)O_n) = \tilde{\pi}^{-1}(H_{b+\tau(b,\epsilon)})$, where $b + \tau = \sqrt{m}\cos\left(\cos^{-1}\frac{b}{\sqrt{m}} \pm \frac{\epsilon}{\sqrt{m}}\right)$

which, taking limts in the addition formula for the cosine, immediately gives $\lim_{m\to\infty}\tau(b,\epsilon)=\epsilon$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

27/40

Proof of Theorem 2.2.3

Proof.

Take $b < a = \Phi^{-1}(\gamma_n(A))$, so that $H_b \subset H = \{x \in \mathbb{R}^n : \langle x, u \rangle \leq a\}$. Then, by Poincare's lemma,

$$\lim_{m} \mu_{n+m} \left(\tilde{\pi}_m^{-1}(A) \right) = \gamma_n(A) > \gamma_n(H_b) = \lim_{m} \mu_{n+m} \left(\tilde{\pi}_m^{-1}(H_b) \right),$$

That is, for all m large enough, $\mu_{n+m}(\tilde{\pi}_m^{-1}(A)) \ge \mu_{n+m}(\tilde{\pi}_m^{-1}(H_b))$, by the isoperimetric inequality for μ_{n+m} (Theorem 2.2.1) yields that for each $\epsilon > 0, b + \epsilon < \sqrt{m}$,

$$\mu_{n+m}\left((\tilde{\pi}_m^{-1}(A))_{\epsilon}\right) \geq \mu_{n+m}\left(\tilde{\pi}_m^{-1}((H_b))_{\epsilon}\right) = \mu_{n+m}\left(\tilde{\pi}_m^{-1}(H_{b+\tau(b,\epsilon)})\right)$$

By Poincare's lemma again,

$$\gamma_n(A+\epsilon O_n) \geq \limsup_m \mu_{n+m}\left((\tilde{\pi}_m^{-1}(A))_{\epsilon}\right) \geq \limsup_m \mu_{n+m}\left(\tilde{\pi}_m^{-1}(H_{b+\tau(b,\epsilon)})\right) = \gamma_n(H_{b+\epsilon})$$

・ロト ・ 同ト ・ ヨト ・ ヨー ・ うへで

Since, this holds for all b < a, it also holds with b replaced by a.

27/40

Theorem 2.2.4

Let A a Borel set of $\mathbb{R}^{\mathbb{N}}(A \in C)$, and γ be the probability law of $(g_i : i \in \mathbb{N})$. Let O denote the unit ball about zero of $l_2 \subset \mathbb{R}^{\mathbb{N}}$, $O = \{x \in \mathbb{R}^{\mathbb{N}} : \sum_i x_i^2 \leq 1\}$. Then, for all $\epsilon > 0$,

$$\gamma(A + \epsilon O) \ge \Phi(\Phi^{-1}(\gamma(A)) + \epsilon).$$
(2.14)

< □ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 월 ∽ Q ↔ 28/40

Proof of Theorem 2.2.4

The proof is indicated in Exercises 2.2.5 throug 2.2.7.

- Exercise 2.2.5
 - Let $\pi_n : \mathbb{R}^{\mathbb{N}} \mapsto \mathbb{R}^n$ be the projection. Then, show that (a) $\gamma_n = \gamma \circ \pi_n^{-1}$, (b) if $K \subset \mathbb{R}^{\mathbb{N}}$ is compact, then $K = \bigcap_{n=1}^{\infty} (\pi_n(K))$, and (c) K+tO, where O is the closed unit ball of l_2 , is compact if K is
- Exercise 2.2.6
 - Use Theorem 2.2.3 and Exercise 2.2.5 to prove Threorem 2.2.4 in the particular case where A is a compact set
- Exercise 2.2.7
 - Since $\mathbb{R}^{\mathbb{N}}$ is polish, it follows that γ is tight(Proposition 2.1.4). Use this and Exercise 2.2.2 to prove Theorem 2.2.4 for any $A \in C$

2.2.3 Application to Gaussian Concentration

2.2.3 Application to Gaussian Concentration

- Translate the isoperimetric inequality into a concentration inequality for function {g_i}ⁿ_{i=1} about their medians.
- A bound for $\gamma(|f(x) M| > \epsilon)$ for all $\epsilon > 0$.
- For Lipschitz functions f about their medians
- For the supremum norm of a separable Gaussian process X, when $\sup_{t \in T} |X(t)| < \infty \text{ a.s.}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition 2.2.5

A function $f : \mathbb{R}^{\mathbb{N}} \mapsto \mathbb{R}$ is Lipschitz in the direction of l_2 , or l_2 -Lipschitz for short, if it is meaurable and if

$$\|f\|_{Lip2} := \sup\left\{\frac{|f(x) - f(y)|}{|x - y|} : x, y \in \mathbb{R}^{\mathbb{N}}, x \neq y, x - y \in I_2\right\} < \infty$$

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 うらぐ

32/40

where |x - y| is the l_2 norm of x-y.

Theorem 2.2.6

Theorem Theorem 2.2.6

If f is an l₂-Lipschitz function on $\mathbb{R}^{\mathbb{N}}$, and if M_f is its median with respect to γ , then,

$$\gamma\{x: f(x) \ge M_f + \epsilon\} \le (1 - \Phi(\epsilon/\|f\|_{Lip2})),$$

$$\gamma\{x: f(x) \le M_f - \epsilon\} \le (1 - \Phi(\epsilon/\|f\|_{Lip2})),$$

(2.15)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

33/40

in particular,

$$\gamma\{x: |f(x) - M_f| \ge \epsilon\} \le 2(1 - \Phi(\epsilon/\|f\|_{Lip2})) \le e^{-\epsilon^2/2\|f\|_{Lip2}^2}$$
(2.16)
for all $\epsilon > 0$

Proof of 2.2.6

Proof.

Let
$$A^+ = \{x \in \mathbb{R}^{\mathbb{N}} : f(x) \ge M_f\}$$
 and $A^- = \{x \in \mathbb{R}^{\mathbb{N}} : f(x) \le M_f\}$.
Then $\gamma(A^+) \ge 1/2, \gamma(A^-) \ge 1/2$.
If $x \in A^+ + \epsilon O$, then there exists $h \in O$ such that $x - \epsilon h \in A^+$,
hence, $f(x - \epsilon h) \ge M_f$ and $f(x) + \epsilon ||f||_{Lip2} \ge f(x - \epsilon h) \ge M_f$; that is
 $A^+ + \epsilon O \subset \{x : f(x) \ge M_f - \epsilon ||f||_{Lip2}\}$.
Then the Gaussian isoperimetric inequality for $A = A^+$ gives (recall

 $\Phi^{-1}(1/2) = 0)$

$$\gamma\{f < M_f - \epsilon \|f\|_{Lip2}\} \leq 1 - \gamma(A^+ + \epsilon O) \leq 1 - \Phi(\epsilon),$$

,which is the second inequality in (2.15) Likewise, $A^- + \epsilon O \subset \{x : f(x) \le M_f + \epsilon \|f\|_{Lip2}\}$ gives the first inequality in (2.15)

Finally (2.16) follows by $(2(1 - \Phi(x)) \le e^{-u^2/2}, Exercise 2.2.8)$

Theorem 2.2.7

Theorem 2.2.7 (The Borell-Sudakov-Tsirelson concentraion inequality for Gaussian process)

Let $X(t), t \in T$, be a centred separable Gaussian process such that $Pr\{\sup_{t\in T} |X(t)| < \infty\} > 0$, and let M be the median of $\sup_{t\in T} |X(t)|$ and σ^2 the supremum of the variances $EX^2(t)$. Then for all $\epsilon > 0$,

$$\Pr\left\{\sup_{t\in\mathcal{T}}|X(t)| > M+u\right\} \le 1-\Phi(u/\sigma), \Pr\left\{\sup_{t\in\mathcal{T}}|X(t)| < M-u\right\} \le 1-\Phi(u/\sigma)$$
(2.17)

and hence,

$$Pr\left\{\left|\sup_{t\in T}|X(t)|-M\right|>u\right\}\leq 2(1-\Phi(u/\sigma))\leq e^{-u^2/2\sigma^2}$$
(2.18)

Proof of Theorem 2.2.7

Proof.

 $X(t), t \in \mathcal{T}$, be a separable centred Gaussian process such that

$$\begin{split} & \Pr\{\sup_{t\in\mathcal{T}}|X(t)|<\infty\}>0. \text{ Then }\sup_{t\in\mathcal{T}}|X(t)|=\sup_{t\in\mathcal{T}_{\mathbf{0}}}|X(t)|<\infty \text{ a.s., where}\\ & T_{\mathbf{0}}=\{t_k\}_{k=1}^{\infty} \text{ is a countable subset of T.} \end{split}$$

Ortho-normalizing (in $L^2(Pr)$), the jointly normal sequence $\{X(t_k)\}$ yields $X(t_k) = \sum_{i=1}^k a_{ki}g_i$, then there exists a version \tilde{X} , $\tilde{X} : \mathbb{R}^{\mathbb{N}} \mapsto \mathbb{R}, \tilde{X}(t_k, x) = \sum_{i=1}^k a_{ik}x_i$ Now, define a function $f : \mathbb{R}^{\mathbb{N}} \mapsto \mathbb{R}$ by

$$f(x) = \sup_{k} \left| \sum_{i=1}^{k} a_{ki} x_{i} \right|$$

ション ふゆ マ キャット しょう くりく

The probability law of f under γ is the same as the law of $\sup_{t \in T_0} |X(t)|$, and $\sup_{t \in T} |X(t)|$.

Proof.

If $h \in O$, th unit ball of l_2 , by Cauchy-Schwarz,

$$|f(x+h) - f(x)|^2 \le \sup_k \left| \sum_{i=1}^k a_{ki} h_i \right| \le \sup_k \left[\sum_{i=1}^k a_{ki}^2 \sum_{i=1}^k h_i^2 \right] \le \sup_k \sum_{i=1}^k a_{ki}^2 = \sup_k EX^2(t_k)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

36/40

Therefore,

$$\|f\|_{Lip2} \leq \sigma^2, \text{ where } \sigma^2 := \sigma^2(X) := \sup_{t \in T} EX^2(t)$$

Then, applies Theorem 2.2.6 to the fucntion f.

If we integrate in (2.18) and let g be a N(0,1) random variable, we obtain,

$$\left| E \sup_{t \in \mathcal{T}} |X(t)| - M \right| \le E \left| \sup_{t \in \mathcal{T}} |X(t)| - M \right| \le \sigma E |g| = \sqrt{2/\pi}\sigma, \quad (2.19)$$

an inequality which is interesting in its own right and which gives, by combining with the same(2.18),

$$\Pr\left\{\left|\sup_{t\in\mathcal{T}}|X(t)|-E\sup_{t\in\mathcal{T}}|X(t)|\right|>u+\sqrt{2/\pi}\sigma\right\}\leq e^{-u^2/2\sigma^2}$$
(2.20)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

37/40

which is of the right order for large values of u. We complete this section with simple applications of Theorem 2.2.7 to integrability and moments of the supremum of a Gaussian processes.

Corollary 2.2.8

Corollary 2.2.8

Let $X(t), t \in T$, be a Gaussian process as in Theorem 2.2.7. Let M and σ also be as in this theorem, and write $||X|| := \sup_{t \in T} |X(t)|$ to ease notation. Then there exists $K < \infty$ such that with the same hyperthesis and notation as in the preceding corollary, for all $p \ge 1$,

$$(E(||X||^{p})^{1/p} \le 2E||X|| + (E|g|^{p})^{1/p} \le K\sqrt{p}E||X||$$

for some absolute constant K.

Proof.

Just integrate inequality (2.18) with respect to $pt^{p-1}dt$ and then use that $M \le 2E ||X||$ (by Chebyshev) and that $\sigma \le \sqrt{\pi/2} \sup_{t \in T} E |X(t)|$. (and see Exercise 2.1.2)

38/40

Corollary 2.2.9

Let $X(t), t \in T$, be a Gaussian process as in Theorem 2.2.7, and let ||X||, M and σ be as in Corollary 2.2.8. Then,

$$\lim_{u \to \infty} \frac{1}{u^2} \log \Pr\{\|X\| > u\} = -\frac{1}{2\sigma^2}$$

and

$${\it Ee}^{\lambda \|X\|^2} < \infty$$
 if and only if $\lambda < rac{1}{\sigma^2}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ●

39/40

Proof.

The first limit follows from the facts that the first inequality in (2.17) can be rewritten as

$$\frac{1}{(u-M)^2} \log \Pr\{\|x\| > u\} \le -\frac{1}{\sigma^2}$$

 $Pr\{||X|| > u\} \ge Pr\{|X(t)| > u\}$ for all $t \in T$ and for a N(0,1) variable g, we do have $u^{-2} \log Pr\{|g| > u/a\} \rightarrow -1/2a^2$ (by $l'H\hat{o}pital's$ rule).

For the second statement, just apply the first limit to $Ee^{\lambda \|X\|} =$

$$1 + \int_0^\infty \int_0^{\lambda \|X\|^2} e^v dv d\mathcal{L}(\|X\|)(u) = 1 + \int_0^\infty e^v \Pr\{\|X\| > \sqrt{v/\lambda}\} dv$$